Computation of Transmissions and Reflections in Geometrical Optics via the Reduced Liouville Equation

نویسندگان

  • Shi Jin
  • Xin Wen
چکیده

We develop a numerical scheme for the wave front computation of complete transmissions and reflections in geometrical optics. Such a problem can be formulated by a reduced Liouville equation with a discontinuous local wave speed or index of refraction, arising in the high frequency limit of linear waves through inhomogeneous media. The key idea is to incorporate Snell’s Law of Refraction into the numerical flux for the reduced Liouville equation. This scheme allows a hyperbolic CFL condition, under which positivity, and stabilities in both l∞ and l1 norms, are established. Numerical experiments are carried out to demonstrate the validity and accuracy of this new scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections

We construct a class of Hamiltonian-preserving numerical schemes for the Liouville equation of geometrical optics, with partial transmissions and reflections. This equation arises in the high frequency limit of the linear wave equation, with a discontinuous index of refraction. In our previous work [Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuo...

متن کامل

A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with transmissions and reflections

We construct a class of Hamiltonian-preserving numerical schemes for a Liouville equation of geometrical optics, with transmissions and reflections. This equation arises in the high frequency limit of the linear wave equation, with discontinuous local wave speed. In our previous work [23], we introduced the Hamiltonian-preserving schemes for the same equation when only complete transmissions or...

متن کامل

On the Quasi-random Choice Method for the Liouville Equation of Geometrical Optics with Discontinuous Wave Speed

We study the quasi-random choice method (QRCM) for the Liouville equation of geometrical optics with discontinuous local wave speed. This equation arises in the phase space computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measure-valued solutions. The so-cal...

متن کامل

On the random choice method for the Liouville equation of geometrical optics with discontinuous local wave speeds∗

We study the random choice method (RCM) for the Liouville equation of geometrical optics with discontinuous local wave speeds. This problem arises in the computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measurevalued solutions. The purpose of this paper is t...

متن کامل

Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction

We construct a class of numerical schemes for the Liouville equation of geometric optics coupled with the Geometric Theory of Diffractions to simulate the high frequency linear waves with a discontinuous index of refraction. In the work [26], a Hamiltonian-preserving scheme for the Liouville equation was constructed to capture partial transmissions and reflections at the interfaces. These schem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006